在新兴应用中,自主机器人对日常生活的潜在影响是明显的,如精密农业,搜救,救援和基础设施检查。然而,这种应用需要在不明和复杂的一组目标中具有广泛而非结构化的环境,所有这些应用都在严格的计算和功率限制下。因此,我们认为必须安排和优化支持机器人自主权的计算内核,以保证及时和正确的行为,同时允许在运行时重新配置调度参数。在本文中,我们考虑了一个必要的第一步,迈出了自主机器人的计算意识的目标:从资源管理角度来看,基础计算内核的实证研究。具体地,我们对三个嵌入式计算平台进行了用于定位和映射,路径规划,任务分配,深度估计和光流的核的定时,电源和内存性能的数据驱动的研究。我们配置文件并分析这些内核,为计算感知自治机器人提供了解调度和动态资源管理的洞察。值得注意的是,我们的结果表明,内核性能与机器人的运营环境有关,证明了计算感知机器人的概念以及为什么我们的作品对这一目标的关键步骤。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
给定实体及其在Web数据中的交互,可能在不同的时间发生,我们如何找到实体社区并跟踪其演变?在本文中,我们从图形群集的角度处理这项重要任务。最近,通过深层聚类方法,已经实现了各个领域的最新聚类性能。特别是,深图聚类(DGC)方法通过学习节点表示和群集分配在关节优化框架中成功扩展到图形结构的数据。尽管建模选择有所不同(例如,编码器架构),但现有的DGC方法主要基于自动编码器,并使用相同的群集目标和相对较小的适应性。同样,尽管许多现实世界图都是动态的,但以前的DGC方法仅被视为静态图。在这项工作中,我们开发了CGC,这是一个新颖的端到端图形聚类框架,其与现有方法的根本不同。 CGC在对比度图学习框架中学习节点嵌入和群集分配,在多级别方案中仔细选择了正面和负样本,以反映层次结构的社区结构和网络同质。此外,我们将CGC扩展到时间不断发展的数据,其中时间图以增量学习方式执行,并具有检测更改点的能力。对现实世界图的广泛评估表明,所提出的CGC始终优于现有方法。
translated by 谷歌翻译